Search results for "Amplitude equation"

showing 10 items of 10 documents

A Subcritical Bifurcation for a Nonlinear Reaction–Diffusion System

2010

In this paper the mechanism of pattern formation for a reaction-diffusion system with nonlinear diffusion terms is investigated. Through a linear stability analysis we show that the cross-diffusion term allows the pattern formation. To predict the form and the amplitude of the pattern we perform a weakly nonlinear analysis. In the supercritical case the Stuart-Landau equation is found, which rules the evolution of the amplitude of the most unstable mode. With the increasing distance from the bifurcation value of the cross-diffusion parameter, the weakly nonlinear analysis fails and a Fourier–Galerkin approach is adopted. In the subcritical case the weakly nonlinear analysis must be pushed u…

Bifurcation Amplitude equation
researchProduct

Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion

2013

In this work we investigate the process of pattern formation induced by nonlinear diffusion in a reaction-diffusion system with Lotka-Volterra predator-prey kinetics. We show that the cross-diffusion term is responsible of the destabilizing mechanism that leads to the emergence of spatial patterns. Near marginal stability we perform a weakly nonlinear analysis to predict the amplitude and the form of the pattern, deriving the Stuart-Landau amplitude equations. Moreover, in a large portion of the subcritical zone, numerical simulations show the emergence of oscillating patterns, which cannot be predicted by the weakly nonlinear analysis. Finally when the pattern invades the domain as a trave…

WavefrontWork (thermodynamics)Partial differential equationGinzburg-Landau equationApplied MathematicsNonlinear diffusionTuring instabilityMathematical analysisFOS: Physical sciencesPattern formationPattern Formation and Solitons (nlin.PS)MechanicsNonlinear Sciences - Pattern Formation and SolitonsInstabilityNonlinear systemAmplitudeQuintic Stuart-Landau equationQuantitative Biology::Populations and EvolutionAmplitude equationSettore MAT/07 - Fisica MatematicaMarginal stabilityMathematics
researchProduct

Pattern formation driven by cross–diffusion in a 2D domain

2012

Abstract In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.

Pattern formationFOS: Physical sciencesSaddle-node bifurcationPattern Formation and Solitons (nlin.PS)Dynamical Systems (math.DS)Bifurcation diagramDomain (mathematical analysis)Reaction–diffusion systemFOS: MathematicsMathematics - Dynamical SystemsBifurcationMathematical PhysicsMathematicsApplied MathematicsNonlinear diffusionTuring instabilityDegenerate energy levelsMathematical analysisGeneral EngineeringGeneral MedicineMathematical Physics (math-ph)Nonlinear Sciences - Pattern Formation and SolitonsBiological applications of bifurcation theoryComputational MathematicsAmplitude equationGeneral Economics Econometrics and FinanceSubcritical bifurcationAnalysis
researchProduct

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

2016

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

PhysicsSteady stateApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPattern formationSettore MAT/01 - Logica Matematica01 natural sciences010305 fluids & plasmasNonlinear systemActivator-inhibitor kinetics Cross-diffusion Turing instability Amplitude equationsAmplitude0103 physical sciencesReaction–diffusion systemStatistical physics0101 mathematicsConstant (mathematics)Settore MAT/07 - Fisica MatematicaTuringcomputercomputer.programming_languageRicerche di Matematica
researchProduct

Turing pattern formation in the Brusselator system with nonlinear diffusion.

2013

In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supe…

Mathematical analysisInner coreFOS: Physical sciencesPattern formationMathematical Physics (math-ph)Pattern Formation and Solitons (nlin.PS)Turing bifurcationNonlinear Sciences - Pattern Formation and SolitonsInstabilityDomain (mathematical analysis)Nonlinear systemBrusselatorAmplitudeActivator-Inhibitor kineticsPattern formationAmplitude equationSettore MAT/07 - Fisica MatematicaTuringcomputerMathematical Physicscomputer.programming_languageMathematicsPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model

2022

<p style='text-indent:20px;'>We investigate the formation of stationary patterns in the FitzHugh-Nagumo reaction-diffusion system with linear cross-diffusion terms. We focus our analysis on the effects of cross-diffusion on the Turing mechanism. Linear stability analysis indicates that positive values of the inhibitor cross-diffusion enlarge the region in the parameter space where a Turing instability is excited. A sufficiently large cross-diffusion coefficient of the inhibitor removes the requirement imposed by the classical Turing mechanism that the inhibitor must diffuse faster than the activator. In an extended region of the parameter space a new phenomenon occurs, namely the exis…

Cross-diffusion FitzHugh-Nagumo Turing instability out-of-phase patterns amplitude equationsApplied MathematicsDiscrete Mathematics and CombinatoricsSettore MAT/07 - Fisica MatematicaDiscrete and Continuous Dynamical Systems - B
researchProduct

Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion

2012

In this work we investigate the phenomena of pattern formation and wave propagation for a reaction–diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart–Landau equation respectively. When the size of the spatial domain is large, and the initial perturbation is localized, the pattern is formed sequentially and invades the whole domain as a travelin…

WavefrontNumerical AnalysisQuintic Stuart–Landau equationGeneral Computer ScienceWave propagationApplied MathematicsNonlinear diffusionMathematical analysisPattern formationTheoretical Computer ScienceQuintic functionNonlinear systemAmplitudeModeling and SimulationReaction–diffusion systemPattern formationAmplitude equationMarginal stabilityMathematicsGinzburg–Landau equation
researchProduct

Pattern selection in the 2D FitzHugh–Nagumo model

2018

We construct square and target patterns solutions of the FitzHugh–Nagumo reaction–diffusion system on planar bounded domains. We study the existence and stability of stationary square and super-square patterns by performing a close to equilibrium asymptotic weakly nonlinear expansion: the emergence of these patterns is shown to occur when the bifurcation takes place through a multiplicity-two eigenvalue without resonance. The system is also shown to support the formation of axisymmetric target patterns whose amplitude equation is derived close to the bifurcation threshold. We present several numerical simulations validating the theoretical results.

PhysicsTuring instabilityApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsMathematical analysisSquare pattern01 natural sciencesSquare (algebra)010305 fluids & plasmasFitzHugh–Nagumo modelNonlinear systemAmplitudeBounded function0103 physical sciencesAmplitude equationMathematics (all)FitzHugh–Nagumo model0101 mathematicsEigenvalues and eigenvectorsBifurcationRicerche di Matematica
researchProduct

INSTABILITY OF HAMILTONIAN SYSTEMS IN THE SENSE OF CHIRIKOV AND BIFURCATION IN A NON LINEAR EVOLUTION PROBLEM EMANATING FROM PHYSICS

2004

We prove the existence of a minimal geometrico-dynamical condition to create hyperbolicity in section in the vicinity of a transversal homoclinic partially hyperbolic torus in a near integrable Hamiltonian system with three degrees of freedom. We deduce in this context a generalization of the Easton's theorem of symbolic dynamics. Then we give the optimal estimation of the Arnold diffusion time along a transition chain in the initially hyperbolic Hamiltonian systems with three degrees of freedom with a surrounding chain of hyperbolic periodic orbits .In a second part, we describe geometrically a mechanism of diffusion studied by Chirikov in a near integrable Hamiltonian system with three de…

[ MATH ] Mathematics [math]dynamique symboliquehyperbolicitymodulational instabilityNavier Stokespartially hyperbolic tori[MATH] Mathematics [math]amplitude equationschevauchement de résonancescenter manifoldconvection mixte –hyperbolicitéoverlapping resonancessymbolic dynamicséquations d'amplitudesystèmes Hamiltoniensbifurcationinstabilité modulationnellevariété centraleHamiltonian systems[MATH]Mathematics [math]tores partiellement hyperboliquesmixed convection
researchProduct

Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion

2014

In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel---Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator's one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we c…

Hopf bifurcationWork (thermodynamics)Partial differential equationApplied MathematicsMathematical analysisPattern formationInstabilityNonlinear diffusion Activator–inhibitor kinetics Turing instability Hopf bifurcation Amplitude equationsymbols.namesakeAmplitudesymbolsDiffusion (business)Settore MAT/07 - Fisica MatematicaTuringcomputerMathematicscomputer.programming_languageActa Applicandae Mathematicae
researchProduct